

G series

Bevel helical gearmotor G MR C3I 125 UO3A - 24 x 200 - 195 B3 HB3Z 90L 4 230.400-50 B5 ,E3 ,F1A ,L

Bevel helical gearmotor - Application given data

Product series • G series

Measure system Metric

Frequency [Hz] 50

Product type Gearmotors with motor

 $Input \ speed \ n_1 \\ \hspace{2cm} Motor \ dependent$

Shaft arrangement Bevel helical

Ratio *i* From 167.7 to 220.35

Applied power P_1 [k W] 1.5 (2 [hp])

Service factor s_f From 0.8 to 2.9

Loads Constant load

Thermal power Pt

Max. environment temperature [° C] 20

Air speed on the housing [m / s] Large, slight ventilation (air speed 1.25 [m / s])

Installation altitude [m] up to 1 000 [m]

Type of duty Continuous - S1

Cooling system Natural convection

Mounting position B3

External loads

High speed shaft end

There are no radial loads F_{r2} applied on low speed shaft end

There are no axial loads F_{a2} applied on low speed shaft end

Configured product

Designation

Standard (catalog) product

G MR C3I 125 UO3A - 24 x 200 - 195 B3 HB3Z 90L 4 230.400-50 B5 ,E3 ,F1A ,L

Bevel helical gearmotor G series	
Input speed n ₁ 1 430 min ⁻¹	
Coupled with motor	
Mounting position B3	
Accessories	
Standard low speed shaft [AN1]	
Bevel helical gearmotor - Technical data	
Designation ratio	195
Effective ratio i _{EFF}	195.31
Output speed n_2	[min ⁻¹] 7.32
Input speed n ₁	[min ⁻¹] 1 430
Applied power P ₁	[k W] 1.5
Output torque M ₂	[N m] 1 814.84
Service factor s_f (installed power)	1.674
Nominal efficiency $oldsymbol{\eta}$	0.92
Gearmotor mass (without motor)	[kg] 95.89
Sound levels (to ISO/CD 8579, tolerance +3 $dB(A)$) sound power level L_{WA} sound pressure level L_{pA}	[dB(A)] 79 [dB(A)] 69
Angular backlash at a distance of 1 [m] from the low speed shaft of min max min max	[rad] 0.0017 [rad] 0.0034 [arcmin] 5.8 [arcmin] 12
Torsional stiffness in condition of nominal load	[N m / arcmin] 45

Lubrication

Gearmotor supplied without oil		
Approximate lubricant quantity	[1] 6.4	
ISO viscosity grade		
mineral oil - Environment temperature 0 ÷ 20 [° C]	[cSt] 220	

mineral oil - Environment temperature $0 \div 20$ [° C] mineral oil - Environment temperature $10 \div 40$ [° C] (cSt) = 320 synthetic oil - Environment temperature $0 \div 40$ [° C] (cSt) = 320

Overall guide to oil-change interval (not according ATEX directive)

Oil temperature[° C]	Oil change interval [h]						
Oil temperature[C]	mineral oil	synthetic oil					
≤ 65	8 000	25 000					
65 ÷ 80	4 000	18 000					
80 ÷ 95	2 000	12 500					
95 ÷ 110	-	9 000					

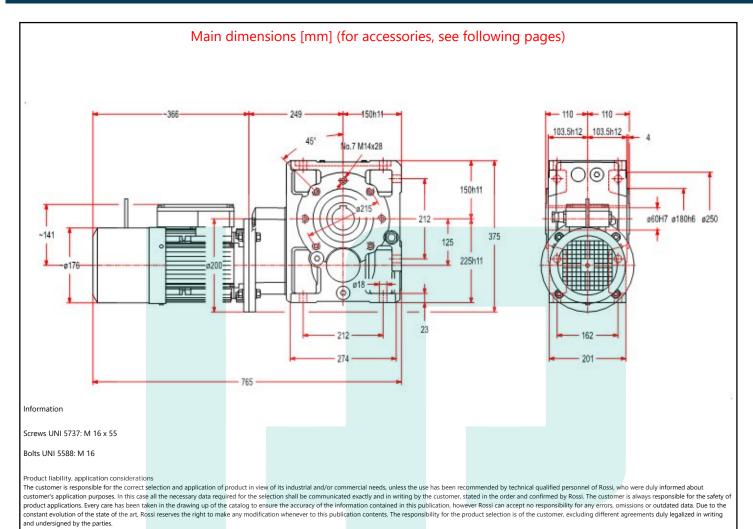
Nominal data

Nominal input power P _{N1}	[k W] 2.54	
Nominal output power P _{N2}	[k W] 2.33	
Nominal thermal power P _{TN} @20°	[k W] 16	
Nominal output torque M_{N2}	[N m] 3 038	
Maximum output torque M _{2 MAX}	[N m] 4 860	

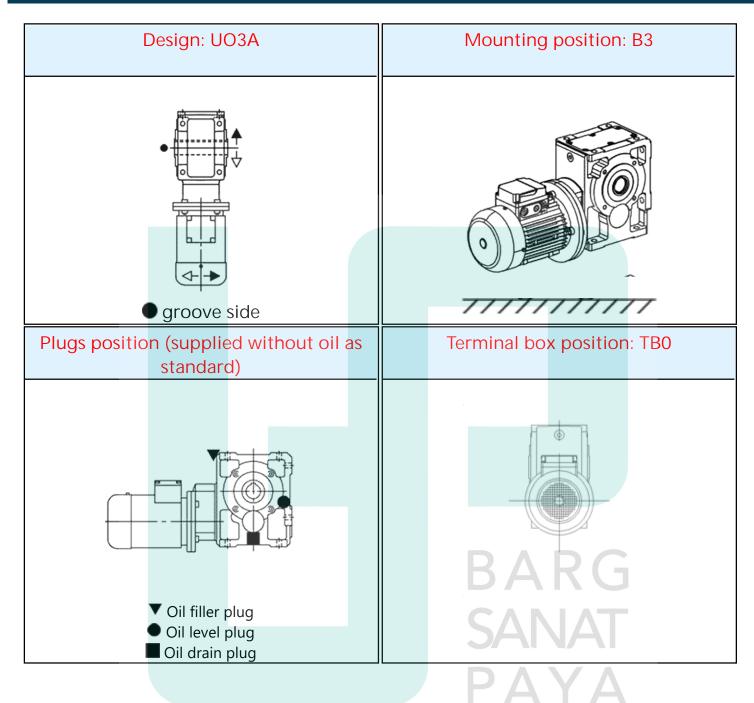
Verification

Thermal power Pt

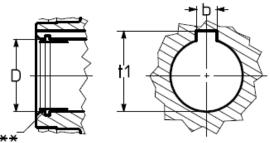
	$PT = PT_N * ft_{1a} * ft_{1b} * ft_2 * ft_3 * ft_4 * ft_5$
where:	
	nominal thermal power when operating in following running conditions:
	 input speed n₁ = 1 400 [min⁻¹] mounting position B3
P_{TN}	 [k W] continuous duty S1 maximum ambient temperature 20° [C] maximum altitude 1 000 [m] above sea level air speed 1.25 [m/s] (typical value in presence of a gearmotor with self-cooled motor)
ft _{1a}	thermal factor according to cooling system
ft _{1b}	thermal factor according to input speed n ₁
ft ₂	thermal factor according to max. ambient temperature and service / duty
ft ₃	thermal factor according to mounting position, train of gears, size and nominal ratio \mathbf{i}_{N}
ft ₄	thermal factor according to installation altitude
ft ₅	thermal factor according to air speed on housing
Calculation	
Applied power P ₁	[k W] 1.5
Thermal power Pt	[k W] = 16 * 0.996 * 1 * 1 * 1 * 1 = 15.94
	Thermal power verification passed
	SANAT
	ΡΔΥΔ

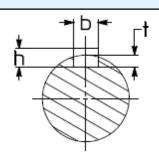


Maximum bending moment $M_{b \, MAX}$ of flange MR

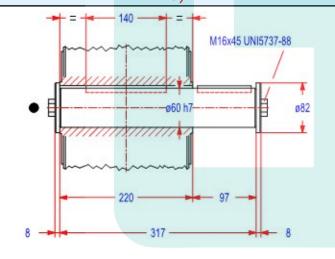

	$M_{bMAX} \geq M_b = rac{G\star(X+H_F)}{1000}$					
where:						
M _{b MAX}	[N m] maximum bending moment on flange					
G	[N] is the motor weight					
X	is the distance from motor center of gravity from flange surface					
H _F	is a variable value according to gear reducer size and flange diameter ${m P_1}$					
1 000	[N m] is a constant value					
Calculation						
M _{b MAX}	[N m] = 500					
M_b	[N m] = 245.17 * (183 + 99) / 1 000 = 69.14					

Maximum bending moment verification passed



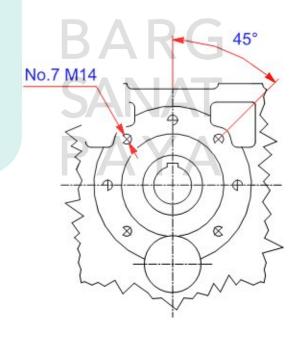


Hollow low speed shaft



Machine shaft

Hole	Parallel Key		Keyway	
D Ø H7 ^{**}	b x h x l [*] h9 h11	b H9 hub	t	t ₁
		N9 shaft	shaft	hub
60	18 x 11 x 140	18	7	64,4


^{*} Recommended length.

Standard low speed shaft - AN1 (size 125)

Fastening tapped holes (size 125)

The relevant through holes to be realized on the driven machine must be all of equal diameter for sizes 140, 200 and 250 (Ø 15, Ø 21 and Ø 25, respectively) as the 2 holes of smaller diameter are not in the position of 22° 20′.

^{**} Each hollow shaft type (standard, stepped, with shrink disc) has a slightly oversized diameter D (at the input) to facilitate the assembly of gear reducer on machine shaft end: this, however, does not affect the connection reliability.

Configured motor

Designation

HB3Z 90L 4 230.400-50 B5 ,E3 ,F1A ,L

HB3Z 90L 4 230.400-50 B5 ,E3 ,F1A ,L	
TX	
Brake motor with d.c. brake catalog TX	
Pn 1.5 kW (2 hp)	
 Motor specifications 5 voltage values stated on nameplate: 220.380 @50Hz 230.400 @50Hz 	
240.415 @50Hz 265.460 @60Hz 277.480 @60Hz	
Motor mounting position (IM) B5	
Self-cooling and encoder Push Pull HTL-LD HTL 10-30V dc [,E3]	
Separate brake supply 110 ÷ 440 V a.c. [F1A]	
Hand lever for manual release with automatic return L [,L]	
Electric motor technical data TX catalog	
Type Size	HB3Z 90 L 4
Poles	4
Coupling dimensions Ø D x E - Ø P	Ø24 x 50 Ø200
Power supply	[V - Hz] 230.400 - 50
Nominal input power P _{N1}	[k W] 1.5
Nominal speed n _N	[min ⁻¹] 1 430
Motor mass	[kg] 25
Directive	Motor ErP
Efficiency class	IE3
Power factor cosφ	0.78
Moment of inertia J_0	[Kg m ²] 0.0047
Overtemperature class	В
Insulation class	F
Protection	IP 55
Type of duty	S1
Synchronous speed	[min ⁻¹] 1 500

Efficiency

100 %	85.30
75 %	86.10
50 %	85.00

Nominal data

Nominal torque M_N	[N m] 10.10
Nominal starting torque M_s / M_n	3.10
Maximum torque M_{MAX}/M_n	3.70
Starting current ratio i_s/i_n	6.70
Rated current I_n @230 [V]	[A] 5.70
Rated current I _n @400 [V]	[A] 3.30

Construction features

Motor size	Bearing D-E	Bearing N-D-E	Housing	Flange B5	End-shield N-D-E	Terminal box cover	Seal rings D-E	Terminal block (4)	Cable glands	Fan cover	Cooling fan
90 L	6205 2Z	6205 2RS	LL	LL	LL	LL	LL	25 × 46 × 7	M5	Painted sheet	Plastic

LL = Light alloy

(4) Terminal block with 6 terminals for cable terminal connection

Table of main functional specifications of brake

Brake size	Rectifier (1)	Motor size		torque n] ± 12	M _f [N	Abso	Absorption			Absorption			elay of (2)			Air-gap [mm]		W₁ (5) [MJ / mm]	C_{MAX} (6) [mm]	W	'max (7, [J])
			Sį	oring N I	ı							braking I		hour		[mm]		hour				
			2	4	6	[V] c.a.	[A] c.a.	W	t ₁ [ms] (3)	t₂ [ms]	t ₁ c.c. [ms] (4)			max	nominal	10	100	1000				
							max															
BZ 05	RM2	90 L	13	27	40	110 ÷ 440	0.26	24	63	220	15		0.30	0.45	160	5	10 000	2 500	355			

- (1) Standard rectifier, supplied as standard; stop time must be 2.5 $\mathbf{s} \div 3.5 \mathbf{s}$. If necessary, consult us
- (2) Values valid with M_{fMAX} , mean air-gap and nominal value of supply voltage
- (3) Release time of brake obtained with standard rectifier and, for RM1, with supply voltage \geq 200 V c.a.
- (4) Braking delay obtained by separate brake supply and coil disconnection on a.c. side of rectifier (t_2) or on a.c. and d.c. side (t_2 d.c.). With direct supply from motor terminal block, the values of t_2 increase of approx. 2.5 times the ones of table
- (5) Friction work for brake disk wear of 1 mm (minimum value for heavy duty; real value is usually greater).
- (6) Maximum brake disk wear
- (7) Maximum friction work for each braking

Revision: v.2019.02 Date: 2022.09.06

Motor main dimensions [mm]

G series

Bevel helical gearmotor G MR ICI 81 UO3A - 24 x 200 - 33,3 B7 HB3 100LA 4 230.400-50 B5R

Bevel helical gearmotor - Application given data

Product series • G series

Measure system Metric Frequency [Hz] 50

Frequency [Hz] 50
Product type Gearmotors with motor

Input speed n₁ Motor dependent

Shaft arrangement Bevel helical

Ratio *i* From 31.635 to 34.965

Applied power P_1 [k W] 2.2 (3 [hp])

Service factor s_f From 0.7 to 2.8

Loads Constant load

Thermal power Pt

Max. environment temperature [° C] 20

Air speed on the housing [m / s] Large, slight ventilation (air speed 1.25 [m / s])

Installation altitude [m] up to 1 000 [m]

Type of duty Continuous - S1

Cooling system Natural convection

Mounting position B7

External loads

High speed shaft end

There are no radial loads F_{r2} applied on low speed shaft end

There are no axial loads F_{a2} applied on low speed shaft end

Configured product

Designation

Standard (catalog) product

G MR ICI 81 UO3A - 24 x 200 - 33,3 B7 HB3 100LA 4 230.400-50 B5R

Bevel helical gearmotor G series	
Input speed n ₁ 1 440 min ⁻¹	
Coupled with motor	
Mounting position B7	
Accessories	
Fluorinated seal rings on high-low speed shaft [TV3]	
Metal plugs [TM2]	
Bevel helical gearmotor - Technical data	
Designation ratio	33.3
Effective ratio i _{EFF}	33.33
Output speed n_2	[min ⁻¹] 43.2
Input speed n_1	[min ⁻¹] 1 440
Applied power P_1	[k W] 2.2
Output torque M ₂	[N m] 457.47
Service factor s_f (installed power)	1.517
Nominal efficiency η	0.94
Gearmotor mass (without motor)	[kg] 30.47
Sound levels (to ISO/CD 8579, tolerance +3 $dB(A)$) sound power level L_{WA} sound pressure level L_{PA}	[dB(A)] 75 [dB(A)] 66
Angular backlash at a distance of 1 [m] from the low speed shaft centre min max min max	[rad] 0.0025 [rad] 0.0050 [arcmin] 8.6 [arcmin] 17
Torsional stiffness in condition of nominal load	[N m / arcmin] 21.2

Tech Sheet

Lubrication

Gearmotor s	upplied with oil
-------------	------------------

Approximate lubricant quantity [I] 1.6

ISO viscosity grade

mineral oil - Environment temperature $0 \div 20$ [° C] mineral oil - Environment temperature $10 \div 40$ [° C] 220 synthetic oil - Environment temperature $0 \div 40$ [° C] 220

Overall guide to oil-change interval (not according ATEX directive)

Oil temperature[° C]	Oil change interval [h]				
Oil temperature[Cj	mineral oil	synthetic oil			
≤ 65	8 000	25 000			
65 ÷ 80	4 000	18 000			
80 ÷ 95	2 000	12 500			
95 ÷ 110	-	9 000			

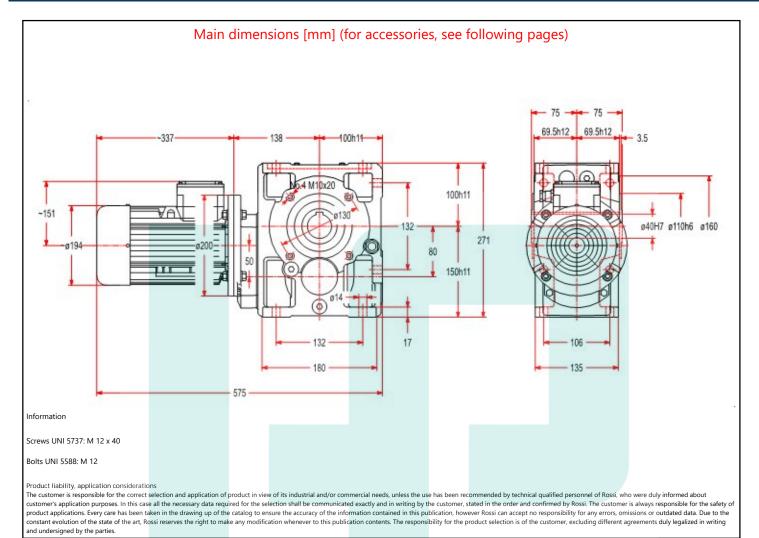
Nominal data

Nominal input power P _{N1}	[k	W] 3.34
Nominal output power P _{N2}	[k	W] 3.14
Nominal thermal power P _{TN} @20°	[k	W] 9.5
Nominal output torque M _{N2}	N]	m] 694
Maximum output torque M _{2 MAX}	[N	m] 1 111

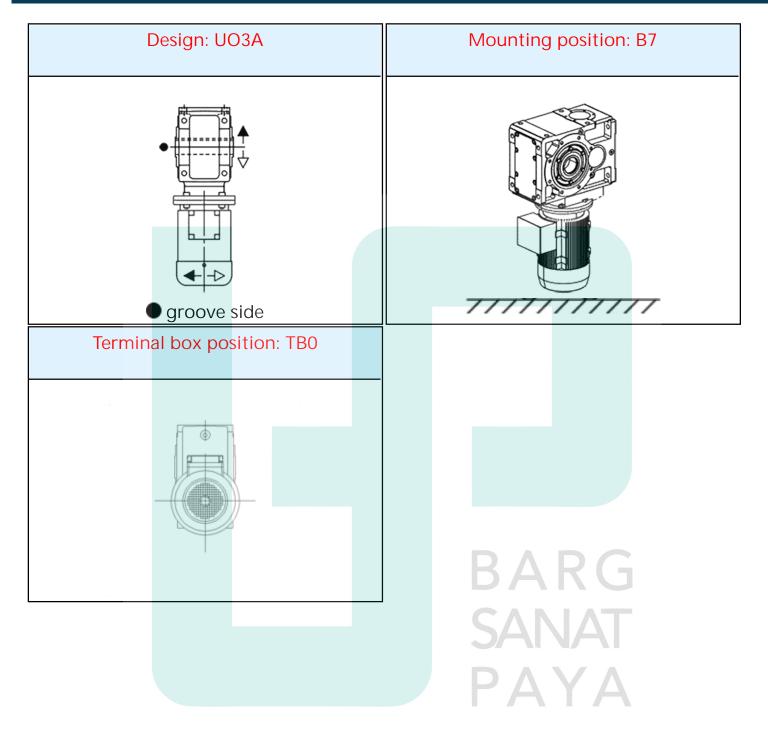
Verification

Thermal power Pt

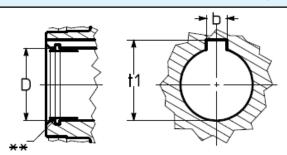
	$PT = PT_N * ft_{1a} * ft_{1b} * ft_2 * ft_3 * ft_4 * ft_5$
where:	
	nominal thermal power when operating in following running conditions:
P _{TN}	 input speed n₁ = 1 400 [min⁻¹] mounting position B3 continuous duty S1 maximum ambient temperature 20° [C] maximum altitude 1 000 [m] above sea level air speed 1.25 [m/s] (typical value in presence of a gearmotor with self-cooled motor)
ft _{1a}	thermal factor according to cooling system
ft _{1b}	thermal factor according to input speed n ₁
ft ₂	thermal factor according to max. ambient temperature and service / duty
ft ₃	thermal factor according to mounting position, train of gears, size and nominal ratio \mathbf{i}_{N}
ft ₄	thermal factor according to installation altitude
ft ₅	thermal factor according to air speed on housing
Calculation	
Applied power P ₁	[k W] 2.2
Thermal power Pt	[k W] = 9.5 * 0.995 * 1 * 1 * 1 * 1 = 9.45
	Thermal power verification passed
	SANAT
	PAYA

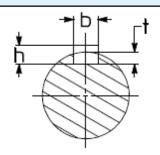


Maximum bending moment $M_{b \, MAX}$ of flange MR


	$M_{bMAX} \geq M_b = rac{G\star(X+H_F)}{1000}$
where:	
M _{b MAX}	[N m] maximum bending moment on flange
G	[N] is the motor weight
X	is the distance from motor center of gravity from flange surface
H_F	is a variable value according to gear reducer size and flange diameter ${m P_1}$
1 000	[N m] is a constant value
Calculation	
M _{b MAX}	[N m] = 112
M_b	[N m] = 254.97 * (168.5 + 38) / 1 000 = 52.65

Maximum bending moment verification passed





Hollow low speed shaft

Gear reducer hollow shaft

Machine shaft

Hole	Parallel Key	Keyway				
D Ø H7 ^{**}	b x h x l [*] h9 h11	b H9 hub N9 shaft	t shaft	t ₁		
40	12 x 8 x 90	12	5	43,3		

^{*} Recommended length.

^{**} Each hollow shaft type (standard, stepped, with shrink disc) has a slightly oversized diameter D (at the input) to facilitate the assembly of gear reducer on machine shaft end: this, however, does not affect the connection reliability.

Configured motor

Designation

HB3 100LA 4 230.400-50 B5R

Motor catalog TX HeGen	
Pn 2.2 kW (3 hp)	
● 5 voltage values stated on nameplate: 220.380 @50Hz 230.400 @50Hz 240.415 @50Hz 265.460 @60Hz 277.480 @60Hz	
Motor mounting position (IM) B5R	
Electric motor technical data TX catalog	
Туре	HB3 100 LA 4
Size	100
Poles	4
Coupling dimensions Ø D x E - Ø P	Ø24 x 50 Ø200
Power supply	[V - Hz] 230.400 - 50
Nominal input power P _{N1}	[k W] 2.2
Nominal speed n_N	[min ⁻¹] 1 440
Motor mass	[kg] 26
Directive	Motor ErP
Efficiency class	IE3
Power factor cosφ	0.76
Moment of inertia J_0	$[Kg m^2] 0.0076$
Overtemperature class	F A J AB
Insulation class	F
Protection	IP 55
Type of duty	S1
Synchronous speed	[min ⁻¹] 1 500
Efficiency	

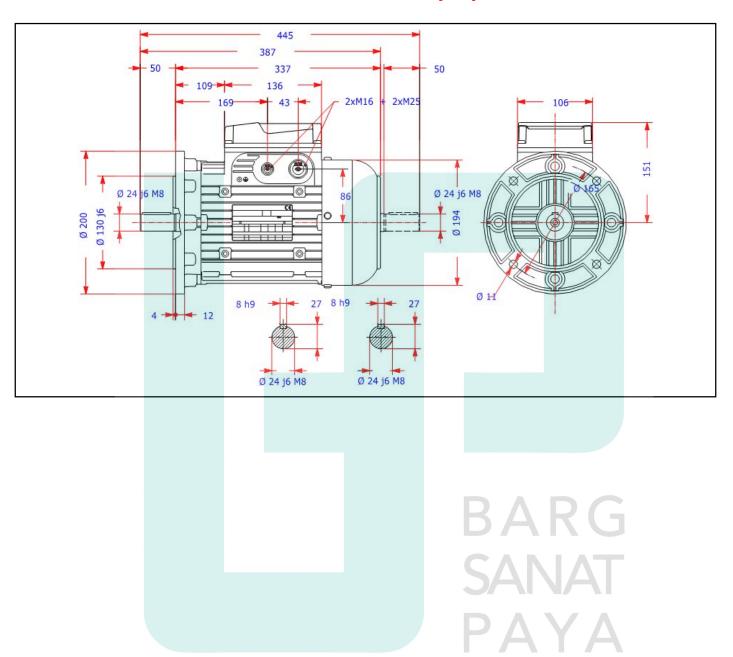
100 %	86.70
75 %	87.20
50 %	85.50

Nominal data

Nominal torque M_N	[N m] 14.60
Nominal starting torque M_s / M_n	3.50
Maximum torque M_{MAX}/M_n	4.40
Starting current ratio i_s/i_n	7.40
Rated current <i>I_n</i> @230 [V]	[A] 8.30
Rated current <i>I_n</i> @400 [V]	[A] 4.80

Construction features

Motor size	Bearing D-E	Bearing N-D-E	Housing	Flange B5R	End-shield N-D-E	Terminal box cover	Seal rings D-E	Terminal block (4)	Cable glands	Fan cover	Cooling fan
100 LA	6206 2Z	6206 2Z	LL	LL	LL	LL	LL	30 × 50 × 7	M5	Painted sheet	Plastic


LL = Light alloy

(4) Terminal block with 6 terminals for cable terminal connection

Motor main dimensions [mm]

